Decarbonizing Minnesota's Natural Gas End Uses

Meeting 5

April 10th, 2020 Via Zoom

Better Energy. Better World.

AGENDA

9:00	Welcome and Introductions
9:15	Presentation and Q&A: The Promise and Potential of EE in Decarbonizing Minnesota's Natural Gas End-Uses
10:00	Discussion on Energy Efficiency
10:45	BREAK
11:00	Overview of District Energy Systems in Minnesota
11:05	Presentation and Q&A: The Promise and Potential of Geothermal Technology in Decarbonizing Minnesota's Natural Gas End-Uses Discussion
11:35	Discussion on Geothermal Technologies
12:00	LUNCH
1:00	Presentation and Q&A: District Energy Systems in Minnesota
1:30	Discussion on Geothermal Technologies
2:30	ADJOURN

Center for Energy and Environment

Presentation and Q&A: The Promise and Potential of EE in Decarbonizing Minnesota's Natural Gas End-Uses

Carl Nelson and Jon Blaufuss, Center for Energy and Environment

Decarbonizing Minnesota's Natural Gas End Uses (Meeting #5)

Insights from the 2020-2029 Minnesota Energy Efficiency Potential Study

Date: Friday, April 10, 2020 (9:15 AM – 10:45 AM)

Minnesota Energy Efficiency Potential Study: 2020–2029

Carl Nelson Director of Program Development Center for Energy and Environment <u>cnelson@mncee.org</u>

Jon Blaufuss Program Coordinator Center for Energy and Environment jblaufuss@mncee.org

Today's Agenda

Background on Potential Study (Carl) Methodology (Carl) Results (Jon) Program & Policy Recommendations (Jon) Q & A

Long history of "CIP" (Conservation Improvement Programs)

1980:

PUC directed to initiate a pilot to demonstrate the "feasibility" of investments in EE.

1983: Utilities with revenues greater than \$50 million were required to operate at least 1 conservation program. Required "significant" investment.

1989: All Public utilities were required to operate conservation improvement programs. Oversight transferred from PUC, low-income requirements added.

1991:

A specific level of spending was required (1.5% electric, 0.5% gas) & munis and coops were included.

2007:

Next Generation **Energy Act Passes.**

2010:

1.5% Savings Goal for Utilities takes Effect

2017:

Munis and Coops meeting a specific threshold exempted from CIP.

Utility Mix in MN – Natural Gas

MN EE Achievements – Natural Gas

Cost of Efficiency in MN

State	ACEEE Ranking	Electric spending (\$/kWh)	Gas spending (\$/therm)
Massachusetts	1	\$0.34	\$7.39
California	2	\$0.35	\$6.02
Rhode Island	3	\$0.37	\$5.89
Vermont	4	\$0.39	\$3.68
Oregon	5	\$0.29	\$3.56
Connecticut	6	\$0.43	\$6.17
Washington	7	\$0.21	\$3.83
New York	7	\$0.27	\$5.12
Minnesota	9	\$0.19	\$1.76
Maryland	10	\$0.33	\$9.88

Goals of Study

- Estimate statewide electric and natural gas energy efficiency for 2020-2029
- Produce actionable resources
- Engage stakeholders

Types of Energy Efficiency Potential

- Maximum Achievable: Subset that is achievable considering market barriers, given the aggressive incentives and idealized programs
 - Rebates set at 100%
 - Technology adoption at theoretical maximum
- **Program Potential**: Subset of achievable, given constrained incentives (50%) and program budgets

High Level Methodology Overview

INPUTS

Societal Cost Test Used for Screening

Results – Gas Utilities

Results – Gas Incremental by Year

Results – Gas Potential by End Use

Cumulative annual 2029 savings

Program potential scenario

Results – Gas Top Five Residential Measures

Cumulative 2029 energy savings (Dth, thousands)	5,200	4,600	2,300	1,900	1,100
Percent of total residential energy savings potential	28%	25%	12%	10%	6%

Results – Gas Top Five Commercial Measures

Cumulative 2029 energy savings (Dth, thousands)	3,600	2,900	2,600	2,500	2,000
Percent of total commercial energy savings potential	16%	13%	12%	11%	9%

Results – Gas Potential by Segment

Program Findings and Recommendations

Current MN Utility Program Findings

Minnesota has a strong foundation of effective CIP programs

- Minnesota currently has some of the lowest cost and best performing programs in the country
- Utilities in Minnesota both IOUs and COUs have been proactive in designing and implementing comprehensive, effective, and innovative program models

Partnerships have helped increase program effectiveness

- Deep relationships with trade allies have helped utilities deliver programs
- Smaller utilities face additional challenges in implementing programs, but the most successful COU programs involve cooperation among utilities
- Some utilities have achieved enhanced performance through joint natural gaselectric programs

Sources of Natural Gas Potential

Smart Thermostats Grow in Importance

Measure categories within gas space heating end use

Program Recommendations

Recommendations for Utility Programs:

- Continue to test promising new approaches.
- Offer comprehensive program designs for larger and harder-to-reach customers.
- Develop upstream incentives and associated program support in selected markets.
- Incorporate operational savings into commercial and industrial programs.
- Employ segment-specific strategies to reach customers.
- Deepen trade ally engagement and training efforts.
- Incorporate AMI-enabled capabilities into programmatic strategies.
- Leverage interest by local governments in energy efficiency.

Coordination among Utilities:

- More systematically share best practices and program successes.
- Coordinate more closely on trade ally outreach and training.
- Work further towards coordinated and/or joint implementation of programs.

Workforce Impacts

\$6,657,000,000

2020-2029 incremental costs of MN utility-driven energy efficiency investments under program achievable scenario Jobs supported

Direct job type	Expected	% of total
	job-years	job-years
HVAC technicians	10,500	21%
Electricians	5,100	10%
Insulation installers	2,200	5%
Mechanical engineers	2,100	4%
Architects	2,000	4%
Plumbers, pipefitters	1,800	4%
Retail salespersons	1,400	3%
Weatherization technicians	1,100	2%
Stationary engineers and boiler operators	700	2%
Other	3,500	7%
Total direct job-years	30,400	62%
Indirect job-years	18,900	38%
TOTAL JOB-YEARS	49,300	100%

Minnesota Energy Efficiency Potential Study Report

<u>Website</u>: www.mncee.org/mnpotentialstudy/home/

Minnesota Energy Efficiency Potential Study Report

Study Appendices

- A) Methodology and Data Sources
- B) Detailed Model Results
- C) Energy Efficiency Measures
- D) Behavioral Measures and Approaches
- E) Load Management and Demand-Response
- F) Low-Income Sector Market Study
- G) Rural Utility and Agriculture Sector Market Study
- H) Small Commercial Market Sector Study
- I) Energy Efficiency Program Benchmarking ReportJ) Residential Buildings Primary Data Collection

Report

J-2) Residential phone survey data and statistics workbook

K) Commercial Large Buildings Primary Data
Collection Report
L) Trade Ally Survey Report
L-2) Trade Ally Survey Interview Scripts
M) Minnesota HVAC Sales Data Report
N) Advisory Committee Membership and Policy
Comments
O) Review of Past Minnesota Energy Efficiency
Potential Studies
P) Analysis of Workforce Impacts of Modeled Energy
Efficiency Programs

Utility Reporting Tools

The utility reporting tool enables results of the potential study to be examined in more granular detail, including by:

- Individual utility (Both electric and natural gas)
- Building segment
- End use
- Measure

Website: https://www.mncee.org/mnpotentialstudy/reporting-tools/

Questions?

Minnesota Energy Efficiency Potential Study: 2020–2029

Carl Nelson Director of Program Development Center for Energy and Environment <u>cnelson@mncee.org</u>

Jon Blaufuss Program Coordinator Center for Energy and Environment jblaufuss@mncee.org

AGENDA

9:00	Welcome and Introductions
9:15	Presentation and Q&A: The Promise and Potential of EE in Decarbonizing Minnesota's Natural Gas End-Uses
10:00	Discussion on Energy Efficiency
<u>10:50</u>	BREAK
11:05	Overview of District Energy Systems in Minnesota
11:10	Presentation and Q&A: The Promise and Potential of Geothermal Technology in Decarbonizing Minnesota's Natural Gas End-Uses Discussion
11:35	Discussion on Geothermal Technologies
12:00	LUNCH
1:00	Presentation and Q&A: District Energy Systems in Minnesota
1:30	Discussion on Geothermal Technologies
2:30	ADJOURN

Center for Energy and Environment

Presentation and Q&A: The Promise and Potential of Geothermal Technology in Decarbonizing Minnesota's Natural Gas End-Uses Discussion

Audrey Schulman and Zeyneb Magavi, Home Energy Efficiency Team

GREAT PLAINSBetter Energy.INSTITUTEBetter World.

The GeoMicroDistrict

A Novel Path to Building Electrification

HEET

 Don't work everywhere
 Large burden on electric grid, especially during winter
 Inequity of access
 Requires collapse of gas industry

≻ Safe

- Renewable & Resilient & Reliable
- Low cost for consumers
- > Workers keep their **jobs**
- Minimal legislative & regulatory change
- Equitable & Scalable & Adaptable

Ground Source Heat Pump

hee

Feasibility Study

Annual Heating & Cooling Loads

Technical Feasibility per Street Segment

The ability to meet energy demand through boreholes in the street only

Comparison of Energy Prices

Annual Greenhouse Gas Emissions

The HEET Grid

 \bigcirc

Photo: Towersidemsp.org

CASE STUDY

2006

- 3,500 students
- 6 new buildings planned
- Installed first geothermal shared loop

2019

- 4X the students
- 3x the buildings
- Geo loop connects 16 buildings
- Expansion continues

Thermal Management: Cooling

Before:

- ~ 3,400 tons
- 14.5mm gallons/yr
- 784 kW

After:

- 750 tons
- 4.5mm gallons/yr
- 185 kW

Thermal Management: Bonuses!

Prewarmed Irrigation Water

Courtesy of The GreyEdge Group[©] & IGSHPA

Energy & Money Savings

System cost (post rebates): \$8 Million

Energy savings: \$1 Million/yr

Research & Evaluation Team

- MIT Sloan School , System Dynamics
- Harvard T.H.Chan School of Public Health, C-CHANGE Institute
- **BuroHappold** Engineering
- Massachusetts **DEP** (Department of Environmental Protection)
- Berkeley National Lab, Earth and Environmental Science
- University of California, **Berkeley**, Civil & Environmental Engineering
- National Renewable Energy Laboratories
- Massachusetts CEC (Clean Energy Center)
- The Grey Edge Group

"The Organizational Ecosystem within and Across Sectors." by leith sharp is licensed for open sharing and adapting under Creative Commons CC BY-AS 4.0

Taste the Future

and transition to a clean energy home

- Gas Companies permitted to bill for BTUs
- Permits utility-scale renewable thermal
- Limits gas pipe depreciation past 2050
- Creates Renewable Thermal Credit Market
- Path to 100% Renewable Thermal by 2050

The F.U.T.U.R.E. Act (H.2849/S.1940)

An Act <u>F</u>or a <u>U</u>tility <u>T</u>ransition to <u>U</u>sing <u>R</u>enewable <u>E</u>nergy

- > Create a path to renewable thermal for gas distribution utilities
- > Move away from investment in new gas infrastructure
- Redirect investment to thermal resource infrastructure
- > Map your thermal wealth (available sources and sinks)
- Pilot GeoMicroDistricts in strategic locations to seed expansion

GeoMicroDistrict by HEET is licensed under a Creative Commons Attribution 4.0 International License.

"Go. Evolve. Don't worry about us."

Problems with Gas

Heat pumps aren't new technology.

They contain fluid that works like a sponge for heat.

When they expand, they absorb heat.

When compressed they "reject" heat.

Annual Heating & Cooling Loads

Heat Exchange

Connects to your existing system

Temperature Control

Site Selection Strategy

87

Installation Begins

Distributed mechanical rooms creates resilience: redundant pumping.

18" HDPE single pipe carries ambient temperature water around the campus.

Other Possibilities

2008 Olympic Media Center, Qingdao, China

- 600 refrigeration tons
- Heat pumps
- Energy source: seawater (mechanicals under dock)

Other Possibilities

Lotte Tower, Korea

- Briefly the tallest building in the world
- 123-story mixed-use building
- 1,100 boreholes under building footprint, 600 feet deep
- Waste energy from municipal and waste water
- > 70% of total thermal load

Courtesy of The GreyEdge Group® & IGSHPA

Other Possibilities:

Drilling Technology for Tight Spaces

'Taste the Future' Events

Create Your Transition Plan Now

-	Future Ready Wish List
	Heat/AC
	Cold-temperature Heat Pump. Model:
	Hot Water
	Heat Pump Electric Water Heater. Model:
	Cooking
	Induction Range. Model:
	Dryer
	Electric Dryer (Heat Pump). Model:
	Fireplace
	Wood or electric insert. Model:
Rer	nember the terms "Heat Pump" and "Induction" are your secrets to efficiency

AGENDA

9:00	Welcome and Introductions				
9:15	Presentation and Q&A: The Promise and Potential of EE in Decarbonizing Minnesota's Natural Gas End-Uses				
10:00	Discussion on Energy Efficiency				
10:45	BREAK				
11:00	Overview of District Energy Systems in Minnesota				
11:05	Presentation and Q&A: The Promise and Potential of Geothermal Technology in Decarbonizing Minnesota's Natural Gas End-Uses Discussion				
11:35 Discussion on Geothermal Technologies					
<u>12:20</u>	LUNCH				
1:05	Presentation and Q&A: District Energy Systems in Minnesota				
1:30	Discussion on Geothermal Technologies				
2:30	ADJOURN				

Center for Energy and Environment

Presentation and Q&A: District Energy Systems in Minnesota

Nina Axelson, Ever-Green Energy

GREAT PLAINS Better Energy. INSTITUTE Better World.

District Energy Decarbonization Trends

Emerging Opportunities for Geoexchange and Beneficial Electrification

Nina Axelson VP, Sustainability and Outreach nina.axelson@ever-greenenergy.com

Community Scale Energy Systems

Underground network of pipes aggregate heating and cooling needs

Aggregated thermal loads allows application of technologies and fuels not feasible for individual buildings

Increases fuel flexibility, rate stability, and reliability

Integration & Renewables

Carbon/GHG Reduction

Renewable Thermal

Geoexchange Systems Utilizing Geothermal, Sewer, Solar, and Storage

Geothermal District Systems

Source: SaveOnEnergy.com

Drake Landing Solar Community in Alberta, Canada

Sapperton District Energy System – Sewer Exchange (British Columbia, Canada)

False Creek Energy Centre in Vancouver, BC, Canada

SEFC BUILDINGS

Modernizing and Decarbonizing Existing Systems

District Energy St. Paul

35% CO2 reduction between 2005 and 2018 70% anticipated after coal retirement (2019 and 2020 data pending)

Oberlin College

(As Metric Tons CO2)

Roadmap to Carbon Neutrality Campus Program

New Community Development Systems Net Zero Aspirations

Towerside Innovation District

Vision for an Adaptable Energy System

Aquifer Thermal Energy Storage – What is it?

ATES is an open-loop geothermal technology.

It relies on temperate water in the aquifer that can be used to heat buildings in the winter and as a loop to remove heat from buildings in the summer.

Bores are drilled into the aquifer to interface with the temperate water source.

Then a secondary water loop carries that water to w buildings in supply/return pipes underground.

Once the water reaches the buildings, a heat exchanger is used to heat or cool the building loop.

Rice Creek Commons Energy Master Plan (as presented in 2015)

Groundwater Treatment Station

2 MGD pumping for 25-30 years minimum

Thermal energy transfer substation

Provide heating and cooling to residential neighborhoods

Avoid natural gas infrastructure

Micro-hydro electrical offset for pumping

70% Reduction in CO2 Emissions

	Traditional Scenario Annual CO ² Emissions	Recommended Scenarios Annual CO ² Emissions	Annual CO ² Reductions	% Reduction
Solar PV	7,524 tons	0 tons	7,524 tons	100%
СНР	3,581 tons	2,905 tons	676 tons	19%
Low Temp District Energy	1,057 tons	747 tons	310 tons	29%
Totals	12,162 tons	3,652 tons	8,510 tons	70%

Equivalent of removing over 1,600 automobiles off the road annually

Mission Rock in San Francisco, California

Mission Rock Development

28-acre site owned by the SF Port Authority

3.5 million square feet of mixeduse development

San Francisco Giants as the Master Developer

Ever-Green Energy as the developer, operator, and manager of the district energy system

Mission Rock Development Goals

ECODISTRICT GOALS

ENERGY	WATER	WASTE	TRANSPORTATION
20-26% better than ASHRAE 90.1-2010	Zero potable water use for non-potable applications	25-50% increase in waste diversion over SF baseline	7% Reduction in carbon emissions from automobile use
 Central Energy Plant for heating, cooling, and hot water Tenant sub-metering and real time information Tenant committments to reduced plug-loads 	 33-47% Reduction in GHG emissions Water efficient fixtures Centralized graywater system Potential for bay source cooling 	 User education to increase waste separation Source control programs to limit sale of landfill materials 	 Improved transit services Improved bike facilities and network Improved walking connections and experience TMPs

SAVING 2.5 MILLION GALLONS OF WATER/YEAR

BAU: 2.5 million gallons/year DE: O million gallons/year

0 million gallons/year

SAVING 30,000 MMBTU OF NATURAL GAS/YEAR

DE:

BAU: 30,000 MMBtu/year DE: 8 MMBtu/year

Total CO2 Savings 1,600 Tons

BAU = Business as Usual with individual generation in each building; DE = District Energy

Key Enablers for Renewable/Carbon-Free Thermal

Policy Measures

Integration into Renewable Portfolio Standards Renewable thermal credits Carbon pricing Sales tax exemptions and rebates Financing incentives

14 states have integrated renewable thermal standards in their RPS

It is critical that any stimulus or Green New Deal packages include funding for renewable or carbon-free thermal technologies.

Minnesota Energy Consumption in 2014: ~ 1762 Trillion BTU

Lawrence Livermore National Laboratory

Source: LINL July, 2016. Data is based on DOE/EIA SEDS (2014). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant heat rate. The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the industrial sector, 65% for the commercial sector, 60% for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent Rounding. LINL-MI-410527

Source: U.S. Department of Energy, Buildings Energy Data Book

Decarbonizing Minnesota's Natural Gas End Uses

Meeting 5

April 10th, 2020 Via Zoom

Better Energy. Better World.

